الافكار المركزية

1 - instantaneous power
2- Active power
3 - Reactive power
4 - Apparent power
5 - Complex power
6 - Power Triangle
7 - Power Factor
8 - Power Factor Correction
9 - Examples

instantaneous power

At any instant, the power is equal to the product of voltages times current

$$
p=v i
$$

(watts)

Active power (p)

 mean Is the average value of the instantaneous power, The terms real power, active power, average power Means same things
$p=V I \cos \theta$

$$
P=V I=\frac{V_{m} I_{m}}{2}=I^{2} R=\frac{V^{2}}{R}
$$

Reactive power (Q)

This power happen if the load contains reactive element L, C

$Q=V \sin \theta \quad$ (volt-ampere reactive, VAR)

where θ is the phase angle between V and I.

The Reactive power to the pure inductor can be written as below

where θ is the phase angle between V and I.
For the inductor,

$$
\begin{equation*}
Q_{L}=V I \tag{VAR}
\end{equation*}
$$

or, since $V=L X_{L}$ or $I=V / X_{L}$,

$$
\begin{equation*}
Q_{L}=I^{2} X_{L} \tag{VAR}
\end{equation*}
$$

$$
\begin{equation*}
Q_{L}=\frac{V^{2}}{X_{L}} \tag{VAR}
\end{equation*}
$$

The reactive power to the capacitor can be written as below

$$
Q_{C}=V I \quad(\mathrm{VAR})
$$

$$
Q_{c}=I^{2} X_{C}
$$

(VAR)

$$
\begin{equation*}
Q_{C}=\frac{V^{2}}{X_{C}} \tag{VAR}
\end{equation*}
$$

Apparent Power (S)

If the load contains both resistance and reactance then the product of voltage (v) and current (I) represents neither real power nor reactive power, it is called apparent power

$$
S=V I \quad \text { (volt-amperes, VA) }
$$

or, since

$$
V=I Z \quad \text { and } \quad I=\frac{V}{Z}
$$

then

$$
\begin{equation*}
S=I^{2} Z \tag{VA}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\frac{V^{2}}{Z} \tag{VA}
\end{equation*}
$$

complex power

$\mathrm{S}=\mathrm{VI}$

Power triangle

$$
P=P \angle 0^{\circ} \quad Q_{L}=Q_{L} \angle 90^{\circ} \quad Q_{C}=Q_{C} \angle-90^{\circ}
$$

For an inductive load, the phasor pover S, as it is often called, is deffued by

$$
S=P+j Q_{L}
$$

For capacitite laad, die p phasor poriere Sis defined by

$$
S=P-j \ell_{c}
$$

THE TOTAL P, Q, AND S

1. Find the real powerer and reactive power for ench branch of the circuit.
2. The total peal powere of the system $\left(P_{T}\right)$ is then the sum of the avergge power delivered to ench branch.
3. The total penctive power (Q_{I}) is the iffeference between the renctive powver of the inducctive loads and that of fle cappacitive loads.
4. The total apparenent power is $S_{\Gamma}=\sqrt{P_{T}^{2}+Q_{T}^{p}}$
5. The total powerver factort is P_{T} / S_{T}.

Example : for the circuit shown find
the total power ,the total reactive power, apparent power, draw power triangle

Solutions:

$$
\text { a. } \begin{aligned}
\mathrm{I} & =\frac{\mathrm{E}}{\mathrm{Z}_{I}}=\frac{100 \mathrm{~V} \angle 0^{\circ}}{6 \Omega+j 7 \Omega-j 15 \Omega}=\frac{100 \mathrm{~V} \angle 0^{\circ}}{10 \Omega \angle-53.13^{\circ}} \\
& =10 \mathrm{~A} \angle 53.13^{\circ} \\
\mathrm{V}_{R} & =\left(10 \mathrm{~A} \angle 53.13^{\circ}\right)\left(6 \Omega \angle 0^{\circ}\right)=60 \mathrm{~V} \angle 53.13^{\circ} \\
\mathrm{V}_{L} & =\left(10 \mathrm{~A} \angle 53.13^{\circ}\right)\left(7 \Omega \angle 90^{\circ}\right)=70 \mathrm{~V} \angle 143.13^{\circ} \\
\mathrm{V}_{C} & =\left(10 \mathrm{~A} \angle 53.13^{\circ}\right)\left(15 \Omega \angle-90^{\circ}\right)=150 \mathrm{~V} \angle-36.87^{\circ} \\
P_{T} & =E I \cos \theta=(100 \mathrm{~V})(10 \mathrm{~A}) \cos 53.13^{\circ}=600 \mathrm{~W} \\
& =I^{2} R=(10 \mathrm{~A})^{2}(6 \Omega)=600 \mathrm{~W} \\
& =\frac{V_{R}^{2}}{R}=\frac{(60 \mathrm{~V})^{2}}{6}=600 \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
S_{I} & =E I=(100 \mathrm{~V})(10 \mathrm{~A})=1000 \mathrm{VA} \\
& =I^{2} Z_{I}=(10 \mathrm{~A})^{2}(10 \Omega)=1000 \mathrm{VA} \\
& =\frac{E^{2}}{Z_{I}}=\frac{(100 \mathrm{~V})^{2}}{10 \Omega}=1000 \mathrm{VA} \\
Q_{I} & =E I \sin \theta=(100 \mathrm{~V})(10 \mathrm{~A}) \sin 53.13^{\circ}=800 \mathrm{VAR} \\
& =Q_{C}-Q_{L} \\
& =I^{2}\left(X_{C}-X_{L}\right)=(10 \mathrm{~A})^{2}(15 \Omega-7 \Omega)=800 \mathrm{VAR}
\end{aligned}
$$

$$
\begin{aligned}
Q_{I} & =\frac{V_{C}^{2}}{X_{C}}-\frac{V_{L}^{2}}{X_{L}}=\frac{(150 \mathrm{~V})^{2}}{15 \Omega}-\frac{(70 \mathrm{~V})^{2}}{7 \Omega} \\
& =1500 \mathrm{VAR}-700 \mathrm{VAR}=800 \mathrm{VAR} \\
F_{p} & =\frac{P_{T}}{S_{I}}=\frac{600 \mathrm{~W}}{1000 \mathrm{VA}}=0.61 \mathrm{leading}(C)
\end{aligned}
$$

$$
\stackrel{P_{T}=600 \mathrm{~W}}{\substack{ \\53.13^{\circ}}} Q_{Q_{T}=800 \mathrm{VAR}(C)}
$$

Example: find complex power

$$
\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}_{I}}=\frac{10 \mathrm{~V} \angle 0^{\circ}}{3 \Omega+j 4 \Omega}=\frac{10 \mathrm{~V} \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}}=2 \mathrm{~A} \angle-53.13^{\circ}
$$

The real power (the term real being derived from the positive real axis of the complex plane) is

$$
P=I^{2} R=(2 \mathrm{~A})^{2}(3 \Omega)=12 \mathrm{~W}
$$

and the reactive power is

$$
Q_{L}=I_{L} X_{L}=(2 \mathrm{~A})^{2}(4 \Omega)=16 \operatorname{VAR}(L)
$$

with

$$
S=P+j Q_{L}=12 \mathrm{~W}+j 16 \mathrm{VAR}(L)=20 \mathrm{VA} \angle 53.13^{\circ}
$$

Complex power and power triangle

$$
S=V I^{\circ}=\left(10 \mathrm{~V} \angle 0^{\circ}\right)\left(2 A \angle+53.13^{\circ}\right)=20 \mathrm{VA} \angle 33.13^{\circ}
$$

Example: find P , Q , S , P.f, It

1	100	0	100
2	200	700 (L)	$\sqrt{(200)^{2}+(700)^{2}}=728.0$
3	300	1.500	$\sqrt{(300)^{2}+(1500)^{2}}=1529.71$
	$P_{T}=600$ Total porere dissipted	$Q_{\mathrm{I}}=800(0)$ Resultan reactrie powe of network	$\begin{aligned} & S_{T}=\sqrt{(600)^{2}+(800)^{2}}=1000 \\ & \text { Aote thata } S_{I} \neq \text { sump of } \end{aligned}$
			each brand: $1000 \neq 100+728+159.711)$

$$
P_{p}=\frac{P_{T}}{S_{T}}=\frac{60 \mathrm{~W}}{1000 \mathrm{VA}}=0.61 \mathrm{leaxining}(C)
$$

The pover tringle es shownin Fig 19.18.
$S_{\text {ince }} S_{T}=I=100 \mathrm{VA}, I=100 \mathrm{VA} 110 \mathrm{~V}=10 \mathrm{~A}$; mad sinee A

$$
I=10 A \angle+5 \cdot 3.13^{\circ}
$$

power factor 1 N N

Power Factor (P.F)

عالم الكالرةٍ
IT is define as :-
1-cosine of phase angle.
2-The ratio of $\frac{\mathrm{P}}{\mathrm{S}}$.
3-The ratio of $\frac{R}{Z}$.
Inductive circuit has Lagging power factor And capacitive circuits has Leading power factor

Example:- For the circuit shown Find P, Q, S, P.F?

$$
Z=6+\mathrm{J}(7-15)=6-\mathrm{J} 8
$$

$$
Z=\sqrt{6^{2}+8^{2}}=10 \Omega
$$

$$
I=\frac{V}{Z}=\frac{100}{10}=10 \mathrm{~A}
$$

$$
\mathrm{P}=\mathrm{I}^{2} \times \mathrm{R}=10^{2} \times 6=600 \mathrm{~W}
$$

$$
Q=I^{2} \times X=10^{2} \times 8=800 \mathrm{~W}
$$

$$
S=V \times I=10 \times 100=1000 \mathrm{~W}
$$

$$
\text { P.f }=\frac{P}{S}=\frac{600}{1000}=0.6(\text { Lead }) .
$$

Example:-For the circuit Find Total P, Q, S, P.F?

$$
Z_{1}=3-\mathrm{J} 4=5 \perp 3^{\circ}
$$

$$
I_{1}=\frac{V}{Z_{1}}=\frac{60}{5}=12 \mathrm{~A}
$$

$$
P_{1}=I_{1}^{2} \times R_{1}=12^{2} \times 3=432 \mathrm{~W}
$$

$$
\mathrm{Q}_{1}=\mathrm{I}_{1}^{2} \times \mathrm{X}_{1}=12^{2} \times 4=576 \mathrm{VAR}
$$

$$
\mathrm{Z}_{2}=\mathrm{J} 10-\mathrm{J} 4=0+\mathrm{J} 6=6190^{\circ}
$$

$$
=\frac{60}{6}=10 \mathrm{~A}
$$

$$
P_{2}=0 \quad, Q_{2}=I^{2} \mathrm{X}=10^{2} \times 6=600 \mathrm{VAR} \text { (Inductive) }
$$

$$
\begin{aligned}
& Z_{3}=9+J 14-J 2=9+J 12=15153^{\circ} \quad, I_{3}=\frac{60}{15}=4 \mathrm{~A} \\
& P_{3}=I_{3}^{2} \times R_{3}=4^{2} \times 9=144 \mathrm{~W}, Q_{3}=4^{2} \times 12=192 \mathrm{VAR} \text { (Inductive) } \\
& P_{T}=P_{1}+P_{2}+P_{3}=432+0+144=576 \mathrm{~W} \\
& Q_{T}=Q_{1}+Q_{2}+Q_{3}=-576+600+192=216 \mathrm{VAR} \\
& S=\sqrt{P^{2}+Q^{2}}=615 \mathrm{~W} \quad, P f=\frac{P}{S}=0.93 \mathrm{Lag} .
\end{aligned}
$$

power factor correction

The following equipment is generally used to improve or correct the power - factor :

1 - synchronance motor when they are over - excited
2 - static capacitor

When p.f is Low the current required for given power is very high and KVAIS also increased

$$
\mathrm{KVA}=\frac{K W}{P . F} \quad, \mathrm{I}=\frac{K V A}{V}, \quad \mathrm{I} \propto \mathrm{KVA}
$$

The process of increasing the power - factor with out altering the voltage and current of the original Load is known as power - factor correction

Also cancelling some or all of the reactive component of power by adding reactance of the opposite type to the
circuit, this is referred to as power -factor correction

Since most Loads are inductive as shown in fig- a
The p.f is improved or correct by connecting acapacitor in parallel with Load as shown in fig- b

Consider the power triangle in fig-
If the original inductive Load has
Apparent power S1

$$
\begin{aligned}
& P=S 1 \cos \theta_{1}, S 1=\frac{p}{\cos \theta_{1}} \\
& Q 1=S 1 \sin \theta_{1}=p \tan \theta_{1}
\end{aligned}
$$

If we want to increase p.f from $\cos \theta_{1}$ to $\cos \theta_{2}$ with out altering the real power (p)

$$
\mathrm{Q} 2=\mathrm{P} \tan \theta_{2}=S_{2} \sin \theta_{2} \quad, \mathrm{~S} 2=\frac{p}{\cos \theta_{2}}
$$

The reduction in the reactive power is caused by the shunt capacitor that is

$$
\begin{aligned}
& \mathrm{Qc}=\mathrm{Q} 1-\mathrm{Q} 2=\mathrm{P} \tan \theta_{1}-\mathrm{p} \tan \theta_{2}, \\
& \mathrm{Qc}=\frac{V^{2}}{x_{C}}=\mathrm{WC} V^{2} \quad, \mathrm{C}=\frac{Q_{C}}{W V^{2}},
\end{aligned}
$$

Example:

A Load consummed (4 kw) at lagging p -factor (0.8)

When connected to (120 v) , 60 Hz
Find the value of capacitor to raise p.f to (0.95)
Solution:

$$
\begin{aligned}
& \operatorname{Cos} \theta_{1}=0.8 \quad, \theta_{1}=\cos ^{-1}(0.8)=37^{\circ}, \\
& \mathrm{S} 1=\frac{P}{\cos \theta_{1}}=\frac{4000}{0.8}=5000 \mathrm{VA} \\
& \mathrm{Q} 1=\mathrm{S} 1 \sin \theta_{1}=5000 \sin 37=3000 \mathrm{VAR}
\end{aligned}
$$

When the p.f is raised to 0.95

$$
\begin{aligned}
& \operatorname{Cos} \theta_{2}=0.95 \quad, \theta_{2}=\cos ^{-1}(0.95)=18.19^{\circ} \\
& \mathrm{S} 2=\frac{P}{\cos \theta_{2}}=\frac{4000}{0.95}=4210.5 \mathrm{VA} \\
& \mathrm{Q} 2=\mathrm{S} 2 \sin \theta_{2}=4210.5 \sin 18.19=1314.4 \mathrm{VAR} \\
& \mathrm{Q}=\mathrm{Q} 1-\mathrm{Q} 2=3000-1314.4=1685.6 \mathrm{VAR} \\
& \mathrm{C}=\frac{Q_{C}}{W V^{2}}=\frac{1685.6}{2 \pi * 60 * 120^{2}}=310.5 \mu \mathrm{f}
\end{aligned}
$$

Second method:

$\mathrm{Q} 1=\mathrm{P} \tan \theta_{1}=4000 * \tan 37=4000 * 0.75=3000 \mathrm{VAR}$
Q2 $=P \tan \theta_{2}=4000 \tan 18.19=4000 * 0.33=1320$ VAR
$Q_{c}=Q 1-Q 2=3000-1320=1680$ VAR
$C=\frac{Q_{C}}{W V^{2}}=\frac{1685.6}{2 \pi * 60 * 120^{2}}=310.5 \mu \mathrm{f}$

Example:

The power factor of an industry drops below (0.85), the power of the component in it are as follow:

1 - Lights p1 = $\mathbf{1 2} \mathrm{kw}, \mathrm{Q}=0$
2- Furnance $\mathbf{p} 2=54 \mathrm{kw}, ~ Q 2=72$ KVAR
3- motor $\mathrm{Pm}=80 \mathrm{kw}$ at 0.8 lag.
a- Determine pt, Qt,
b-) the value of capacitor required to bring p.f to
0.85 , c-) total current befor and after p.f correction
s olution:
a) $P t=p 1+p 2+p m=12 k+54 k+80 k=146 k w$
$\mathrm{Qm}=\mathrm{p} \boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}_{m}=80 \tan 37=60$ KVAR
$Q t=0+54 k+60 k=132 K V A R \quad S=196.8 K L 42$
b)- $\theta_{2}=\cos ^{-1}(o .85)=31.8^{\circ}$

Q2 $=\mathrm{P} \tan \theta_{2}=146 \mathrm{k} \tan 31.8=90.5 \mathrm{k}$ VAR, $\boldsymbol{S}_{\mathbf{2}}=171.8 \mathrm{~K} \mathrm{L31.8}$
Qc=Q1-Q2 =132 K-90.5 K = 41.5 KVAR
$\mathrm{Qc}_{\mathrm{c}}=\frac{V^{2}}{X_{C}}, \mathrm{Xc}=\frac{V^{2}}{Q_{C}}=\frac{600^{2}}{41.5 K}=8.67 \Omega, \mathrm{c}=\frac{1}{W X_{C}}=\frac{1}{2 \pi f X c}=306 \mathrm{nf}$
$I_{1}=\frac{S}{E}=\frac{196.8 \mathrm{~K}}{600}=328 \mathrm{~A}, \quad I_{2}=\frac{S_{2}}{E}=\frac{171.8 \mathrm{~K}}{600}=286 \mathrm{~A}$

EXAMPLE 19.6

a. A small industrial plant has a $10-\mathrm{kW}$ heating load and a $20-\mathrm{kVA}$ inductive load due to a bank of induction motors. The heating elements are considered purely resistive $\left(F_{p}=1\right)$, and the induction motors have a lagging power factor of 0.7. If the supply is 1000 V at 60 Hz , determine the capacitive element required to raise the power factor to 0.95.
b. Compare the levels of current drawn from the supply.

Solutions:

a. For the induction motors,

$$
\begin{aligned}
S & =V I=20 \mathrm{kVA} \\
P & =S \cos \theta=\left(20 \times 10^{3} \mathrm{VA}\right)(0.7)=14 \times 10^{3} \mathrm{~W} \\
\theta & =\cos ^{-1} 0.7 \cong 45.6^{\circ}
\end{aligned}
$$

and

$$
Q_{L}=V I \sin \theta=\left(20 \times 10^{3} \mathrm{VA}\right)(0.714)=14.28 \times 10^{3} \mathrm{VAR}(L)
$$

The power triangle for the total system appears in Fig. 19.28.
Note the addition of real powers and the resulting S_{T} :

$$
S_{T}=\sqrt{(24 \mathrm{~kW})^{2}+(14.28 \mathrm{kVAR})^{2}}=27.93 \mathrm{kVA}
$$

with

$$
I_{T}=\frac{S_{T}}{E}=\frac{27.93 \mathrm{kVA}}{1000 \mathrm{~V}}=27.93 \mathrm{~A}
$$

The desired power factor of 0.95 results in angle between S and P of

$$
\theta=\cos ^{-1} 0.95=18.19^{\circ}
$$

changing the power triangle to that of Fig. 19.29:

$$
\begin{array}{r}
\text { with } \tan \theta=\frac{Q_{L}^{\prime}}{P_{T}} \rightarrow Q_{L}^{\prime}=P_{T} \tan \theta=\left(24 \times 10^{3} \mathrm{~W}\right)\left(\tan 18.19^{\circ}\right) \\
=\left(24 \times 10^{3} \mathrm{~W}\right)(0.329)=7.9 \mathrm{kVAR}(L)
\end{array}
$$

The inductive reactive power must therefore be reduced by

$$
Q_{L}-Q_{L}^{\prime}=14.28 \mathrm{kVAR}(L)-7.9 \mathrm{kVAR}(L)=6.38 \mathrm{kVAR}(L)
$$

Therefore, $Q_{C}=6.38 \mathrm{kVAR}$, and using

$$
Q_{C}=\frac{E^{2}}{X_{C}}
$$

we obtain

$$
X_{C}=\frac{E^{2}}{Q_{C}}=\frac{\left(10^{3} \mathrm{~V}\right)^{2}}{6.38 \times 10^{3} \mathrm{VAR}}=156.74 \Omega
$$

and $\quad C=\frac{1}{2 \pi f X_{C}}=\frac{1}{(2 \pi)(60 \mathrm{~Hz})(156.74 \Omega)}=\mathbf{1 6 . 9 3} \mu \mathbf{F}$
b. $S_{T}=\sqrt{(24 \mathrm{~kW})^{2}+[7.9 \mathrm{kVAR}(L)]^{2}}$

$$
=25.27 \mathrm{kVA}
$$

$$
I_{T}=\frac{S_{T}}{E}=\frac{25.27 \mathrm{kVA}}{1000 \mathrm{~V}}=25.27 \mathrm{~A}
$$

The new I_{T} is

$$
I_{\tau}=25.27 \mathrm{~A} / 27.93 \mathrm{~A}
$$

(orioinal)

FIG. 19.28
Initial power triangle for the load of Example 19.6.

FIG. 19.29
Power triangle for the load of Example 19.6 after raising the power factor to 0.95 .

example: for circuit shown

a. Determine P_{T} and Q_{T}.
b. Determine what value of capacitance (in microfarads) is required to bring the power factor up to 0.85 .
c. Determine generator current before and after correction.

Plant loads
(a)

b) Power triangle for motor.
b. The power triangle for the plant is shown in Figure 17-21(a). However, we must correct the power factor to 0.85 . Thus we need $\theta^{\prime}=\cos ^{-1}(0.85)=$ 31.8°, where θ^{\prime} is the power factor angle of the corrected load as indicated in Figure 17-21(b). The maximum reactive power that we can tolerate is thus $Q_{\mathrm{T}}^{\prime}=P_{\mathrm{T}} \tan \theta^{\prime}=146 \tan 31.8^{\circ}=90.5 \mathrm{kVAR}$.

(a) Power triangle for the plant

(b) Power triangle after correction

FIGURE 17-21 Initial and final power triangles. Note that P_{T} does not change when we correct the power factor.

Now consider Figure $17-22 . Q_{\mathrm{T}}^{\prime}=Q_{c}+132 \mathrm{kVAR}$, where $Q_{\mathrm{T}}^{\prime}=$ 90.5 kVAR . Therefore, $Q_{C}=-41.5 \mathrm{kVAR}=41.5 \mathrm{kVAR}$ (cap.). But $Q_{C}=$ V^{2} / X_{C}. Therefore, $X_{C}=V^{2} / Q_{C}=(600)^{2} / 41.5 \mathrm{kVAR}=8.67 \Omega$. But $X_{C}=$ $1 / \omega C$. Thus a capacitor of

$$
C=\frac{1}{\omega X_{C}}=\frac{1}{(2 \pi)(60)(8.67)}=306 \mu \mathrm{~F}
$$

will provide the required correction.

FIGURE 17-22
c. For the original circuit Figure 17-21(a), $S_{T}=196.8 \mathrm{kVA}$. Thus,

$$
I=\frac{S_{\mathrm{T}}}{E}=\frac{196.8 \mathrm{kVA}}{600 \mathrm{~V}}=328 \mathrm{~A}
$$

For the corrected circuit 17-21(b), $S_{\mathrm{T}}^{\prime}=171.8 \mathrm{kVA}$ and

$$
I=\frac{171.8 \mathrm{kVA}}{600 \mathrm{~V}}=286 \mathrm{~A}
$$

Thus, power factor correction has dropped the current by 42 A .

