

Introduction

\checkmark A series-parallel configuration is one that is formed by a combination of series and parallel elements.
\succ A complex configuration is one in which none of the elements are in series or parallel.

Reduce and Return Approach

\succ Reduce:
\succ Reduce the circuit to its simplest form across the source and then determine the source current $\left(I_{s}\right)$.
\succ Return:
\succ Using the resulting source current $\left(I_{s}\right)$ to work back to the desired unknown.

Problem 11. Resistances of $10 \Omega, 20 \Omega$ and 30Ω are connected (a) in series and (b) in parallel to a 240 V supply. Calculate the supply current in each case.
(a) The exeres cirauit is shown in Fig. .5.2l The equividentresistarce $R_{T}=10 \Omega+20 \Omega+30 \Omega=60 \Omega$

Supply curreent $/=\frac{V}{R_{T}}=\frac{240}{60}=4 \mathrm{~A}$

Figure 5.21

B-When the Resistances are connected in parallee

$$
\frac{1}{R_{\mathrm{T}}}=\frac{1}{10}+\frac{1}{20}+\frac{1}{30}=\frac{6+3+2}{60}=\frac{11}{60}
$$

$$
\text { hence } R_{\mathrm{T}}=\frac{60}{11} \Omega
$$

Supply current

$$
I=\frac{V}{R_{\mathrm{T}}}=\frac{240}{\frac{60}{11}}=\frac{240 \times 11}{60}=44 \mathrm{~A}
$$

Problem 12. For the series-parallel

 arrangement shown in Fig. 5.24, find (a) the supply current, (b) the current flowing through each resistor and (c) the p.d. across each resistor.p.d. : potential difference يقصد فرق الجهر p.d.

Figure 5.24
(a) The equivalent resistance R_{x} of R_{2} and R_{3} in parallel is:
$R_{\mathrm{x}}=\frac{6 \times 2}{6+2}==1.5 \Omega$
The equivalent resistance R_{T} of R_{1}, R_{x} and R_{4} in series is:
$R_{T}=2.5+1.5+4=8 \Omega$
Supply current
$I=\frac{V}{R_{T}}=\frac{200}{8}=25 \mathrm{~A}$
(b) The current flowing through R_{1} and R_{4} is 25 A . The current flowing through

$$
\begin{aligned}
R_{2} & =\left(\frac{R_{3}}{R_{2}+R_{3}}\right) I=\left(\frac{2}{6+2}\right) 25 \\
& =6.25 \mathrm{~A}
\end{aligned}
$$

The current flowing through

$$
\begin{aligned}
R_{3} & =\left(\frac{R_{2}}{R_{2}+R_{3}}\right) I \\
& =\left(\frac{6}{6+2}\right) 25=18.75 \mathrm{~A}
\end{aligned}
$$

p.d. across R_{1}, i.e.
$V_{1}=I R_{1}=(25)(2.5)=62.5 \mathrm{~V}$ p.d. across R_{x}, i.e.
$V_{\mathrm{x}}=I R_{\mathrm{x}}=(25)(1.5)=37.5 \mathrm{~V}$
p.d. across R_{4}, i.e.
$V_{4}=I R_{4}=(25)(4)=100 \mathrm{~V}$
Hence the p.d. across R_{2}
$=$ p.d. across $R_{3}=37.5 \mathrm{~V}$

Problem 13. For the circuit shown in

 Fig. 5.26 calculate (a) the value of resistor R_{x} such that the total power dissipated in the circuit is 2.5 kW , (b) the current flowing in each of the four resistors.

Figure 5.26
(a) Power dissipated $P=V I$ watts, hence $2500=(250)(I)$
i.e. $I=\frac{2500}{250}=10 \mathrm{~A}$

From Ohm's law,
$R_{\mathrm{T}}=\frac{V}{I}=\frac{250}{10}=25 \Omega$,
where R_{T} is the equivalent circuit resistance. The equivalent resistance of R_{1} and R_{2} in parallel is

$$
\frac{15 \times 10}{15+10}=\frac{150}{25}=6 \Omega
$$

The equivalent resistance of resistors R_{3} and R_{x} in parallel is equal to $25 \Omega-6 \Omega$, i.e. 19Ω.

The voltage $V_{1}=I R$, where R is 6Ω, from above, i.e. $V_{1}=(10)(6)=60 \mathrm{~V}$. Hence

$$
\begin{aligned}
V_{2} & =250 \mathrm{~V}-60 \mathrm{~V}=190 \mathrm{~V} \\
& =\text { p.d. across } R_{3} \\
& =\text { p.d. across } R_{x} \\
I_{3} & =\frac{V_{2}}{R_{3}}=\frac{190}{38}=5 \mathrm{~A} .
\end{aligned}
$$

Thus $I_{4}=5 \mathrm{~A}$ also, since $I=10 \mathrm{~A}$. Thus

$$
\mathrm{R}_{\mathrm{x}}=\frac{V_{2}}{I_{4}}=\frac{100}{5}=38 \Omega
$$

Problem 14. For the arrangement shown in Fig. 5.27, find the current I_{x}.

Figure 5.27

$$
I=\frac{17}{4.25}=4 \mathrm{~A}
$$

From Fig. 5.28(b),

$$
I_{1}=\left(\frac{9}{9+3}\right)(I)=\left(\frac{9}{12}\right)(4)=3 \mathrm{~A}
$$

From Fig. 5.27

$$
I_{x}=\left(\frac{2}{2+8}\right)\left(I_{1}\right)=\left(\frac{2}{10}\right)(3)=0.6 \mathrm{~A}
$$

Example: 36 Find the total Resistance

(a)

Example : 37 Determine the currents

 $-1 \perp$ and voltages indicated in fig: $\perp \perp$

Example-39 H.W

Find the indicated currents and voltages for the network shown in Fig.

Example-40 H.W

Find the current I_{4} and the voltage V_{2} for the network shown in fig .

Example-41 H.W

a. Find the voltages V_{1}, V_{2} and $V_{a b}$ for the network in Fig.
b. Calculate the source current I_{s}.

Example-42 H.W

Calculate the indicated currents and voltage in Fig.

