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 :The derivative is one of the key ideas in 

calculus, and is used to study a wide variety of problems in mathematics, 

science, economics, and medicine. These problems include finding the 

points at which the continuous function is zero, calculating the velocity and 

acceleration of a moving object and other applications.  

1. Tangents and the Derivative at a Point 

In this section we define the slope and tangent to a curve at a point, and the 

derivative of a function at a point. The derivative gives a way to find both 

the slope of a graph and the instantaneous rate of change of a function. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1 The slope of the tangent line at P is. 
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Summary 
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2. The Derivative as a Function 

 

 

 

 

 

 

 

 

 

 

 

      

 

FIGURE 2 Two forms for the difference quotient. 

 
 

 

FIGURE 2 Two forms for the difference quotient. 
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EXAMPLE 1:Using the definition, calculate the derivatives of the 

function     
 

   
 

Solution: 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 2: derivative the function by Using the Alternative 

Formula      √          

Solution : 
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Notations 

There are many ways to denote the derivative of a function y = ƒ(x), where 

the independent variable is x and the dependent variable is y. Some common 

alternative notations for the derivative are. 

 

 

 

3. Differentiation Rules 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 1 Differentiate the following powers of x. 
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Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 2: 

 

(a) The derivative formula  

 

 

 

(b) Negative of a function 
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EXAMPLE 3: Find the derivative of the polynomial 

      
 

 
        

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 4: Find the derivative of      
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Solution: 

 

 

 

 

 

 

 

 

EXAMPLE 5: Find the derivative of                

Solution: 
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EXAMPLE 6: Find the derivative of       
    

    
            

Solution: 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 7: Find the derivative of    
            

  
 

Solution :algebra to simplify the expression. First expand the numerator and 

divide by x4: 

 

 

 

Then use the Sum and Power Rules: 

 

 

 

 

 

 

 

 



10 
 

4. Second- and Higher-Order Derivatives: 

If y = ƒ(x) is a differentiable function, then its derivative ƒ′(x) is also a 

function. If ƒ′ is also differentiable, then we can differentiate ƒ′ to get a new 

function of x denoted by ƒ″. So ƒ″ = (ƒ′)′. The function ƒ″ is called the 

second derivative of ƒ because it is the derivative of the first derivative. It is 

written in several ways: 

 

 

 

The symbol   means the operation of differentiation is performed twice. If 

y =   , then y′ =     and we have 

 

 

 

Thus             

If y″ is differentiable, its derivative, y‴ = dy″/dx = d3y/dx3, is the third 

derivative of y with respect to x. The names continue as you imagine, with 

 

 

 

denoting the nth derivative of y with respect to x for any positive integer n. 

We can interpret the second derivative as the rate of change of the slope of 

the tangent to the graph of y = ƒ(x) at each point. 
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EXAMPLE 10 The first four derivatives of              are 

 

 

 

 

 

 

  

All polynomial functions have derivatives of all orders. In this example, 

the fifth and later derivatives are all zero 
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5. Derivatives of Trigonometric Functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 1: We find derivatives of the sine function involving 

differences, products, and quotients. 

 

 

 

 

EXAMPLE 2 We find derivatives of the cosine function in combinations with other 

functions. 
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EXAMPLE 2: We find derivatives of the cosine function in combinations 

with other functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 3: Find d(tan x)/dx.  

Solution: We use the Derivative Quotient Rule to calculate the derivative: 

 

 

 

 

6. The Chain Rule 
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6. The Chain Rule 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 1: The function                 

Solution: 
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“Outside-Inside” Rule 
 
 
 
 
 
 
 
 
 

EXAMPLE 2 Differentiate sin (x2 + ex) with respect to x. 

Solution We apply the Chain Rule directly and find 

 

 

 

 

 

 

 

 

EXAMPLE 3 Differentiate         

Solution Here the inside function is u = g(x) = cos x and the outside function 

is the exponential function ƒ(x) = ex. Applying the Chain Rule, we get 
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EXAMPLE 4: Find the derivative of                    

Solution: Notice here that the tangent is a function of 5 - sin 2t, whereas the 

sine is a function of 2t, which is itself a function of t. Therefore, by the 

Chain Rule, 

 

 

 

 

 

 

 

 

 

 

The Chain Rule with Powers of a Function 

EXAMPLE 5: The Power Chain Rule simplifies computing the derivative 

of a power of an expression. 
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7. Derivatives of Exponents Functions and 

Logarithms 

Derivative of the Natural Logarithm Function 

 

 

 

 

EXAMPLE 1 : find dy/dx 

 

 

 

 

 

 

 

 

 

 

 

𝑎 𝑢   𝑥 

𝑏 𝑢  𝑥    
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The Derivatives of    and        

 

 

 

 

EXAMPLE 2 Here are some derivatives of general exponential functions. 

 

 

 

 

 

 

 

 

 

 

 

 

𝑐 𝑢   x  
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EXAMPLE 3 Find dy/dx if   
              

   
      

Solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We then take derivatives of both sides with respect to x, 

 

Next we solve for dy /dx: 

 

Finally, we substitute for y: 
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8. Implicit Differentiation 

 

 

 

 

 

EXAMPLE 1 Find
  

  
                

Solution We differentiate the equation implicitly.  
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Derivatives of Higher Order 

Implicit differentiation can also be used to find higher derivatives. 

EXAMPLE 4 Find  
   

   
                . 

Solution To start, we differentiate both sides of the equation with respect to 

x in order to 

find y′ = dy/dx.        

                  

 

 

 

 

 


