Week No-6

Description of Operational Amplifier:

- The types of Operational Amplifier.
- Comparator
- Zero detector

Operational Amplifier (Op-Amp)

- A combination of transistors, resistors, capacitors that
- Amplifies the difference between two input voltages and
- Produces a single output

Operational Amplifier Packaging

- Most operational amplifies now available as "dual-inline packages"
-14-lead dip package
-8-lead minidip package
- Can contain more than one op-amp

Op-Amp Parameters

- $A_{o d}=$ differential or open-loop gain
- Output:
- 180° out of phase with v_{1} (inverting)
- In phase with v_{2} (non-inverting)
- Op-amp responds only to differences between v_{2} and v_{1}
- Common-mode signal when $v_{2}=v_{1} \neq 0$
- Characteristic called "common-mode rejection"

Op-Amp Transfer Characteristics

Ideal Op-Amp Characteristics

- Effective input resistance = infinity
- Effective output resistance = zero
- Internal differential gain, $A_{o d}=$ infinity
- Differential input voltage $\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)=$ zero
- Operation of op-amp without external control is impractical

Inverting Op-Amp Amplifier

- R_{2} feedback resistor - connects output back to input
- Negative feedback because v_{0} is 180° out-ofphase with v_{1} - therefore subtracts from input - decreases available gain.

Ideal Op-Amp Inverting Amplifier

- Transfer function or voltage gain

$$
v_{o}=-\frac{R_{2}}{R_{1}} v_{i} \quad A_{V}=\frac{v_{o}}{v_{i}}=-\frac{R_{2}}{R_{1}}
$$

- Input resistance.

$$
R_{i}=\frac{v_{i}}{i_{i}}=\frac{v_{i}}{v_{i} / R_{1}}=R_{1}
$$

Virtual Ground

- $A_{\text {od }}=$ infinity
- $\mathbf{v}_{2}-\mathrm{v}_{1}=0$
- Node 2 is grounded
- Therefore, $v_{2}=0$
- $\mathrm{v}_{1}=-\mathrm{v}_{2}$; therefore, $\mathrm{v}_{1}=0$
- Since $v_{1}=0$, node 1 is considered to be at "virtual ground"
- Then, $i_{1}=-i_{2}$ and $v_{i} / R_{1}=-v_{0} / R_{2}$

$$
\mathrm{v}_{\mathrm{o}}=-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \mathrm{v}_{\mathrm{i}} \quad \mathrm{~A}_{\mathrm{V}}=\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{i}}}=-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}
$$

Weighted Summing Amplifier

$$
v_{o}=\sum_{i=1}^{n}-\frac{R_{F}}{R_{i}} v_{i i}
$$

Op-amp

* It has two inputs: the inverting input (-) and the noninverting input (+), and one output.
* It has usually two supplies ($\left.\pm \mathrm{V}_{\mathrm{ss}}\right)$ but it can work with one.

Symbol of op-amplifier

	Ideal Op Amp	Typical Op Amp
Open-loop voltage gain A	∞	$10^{5}-10^{9}$
Common mode voltage gain	0	10^{-5}
Frequency response f	∞	$1-20 \mathrm{MHz}$
Input impedance $\mathrm{Z}_{\text {in }}$	∞	$10^{6} \Omega($ bipolar $10^{9}-10^{12} \Omega(\mathrm{FET})$
Output impedance $\mathrm{Z}_{\text {out }}$	0	$50-1000 \Omega$

Output signal shape of Op-amp

* Inverting mode:
$>$ Invert the input signal.
$>\mathrm{V}_{\mathrm{o}}=-\mathrm{AV}_{\mathrm{in}}$.

Non-inverting mode (follower):
> Input signal dose not change.

$>\mathrm{V}_{0}=+1 \mathrm{~V}_{\text {in }}$

Unity gain non-inverting amplifier (follower)

* A special case of the non-inverting amplifier
* The resistor network is not used in this circuit
* The output is connected directly to the inverting input
* Used in output buffering and impedance matching bw. a high source impedance and low-impedance input circuit

$$
A=\frac{V_{\text {out }}}{\overline{V_{\text {in }}}}=+1
$$

Comparator

* a comparator is a device which compares two voltages or currents and switches its output to indicate which is larger (one is reference)
* Very useful for comparing signals and working with sensors
* Comparator circuits can be built with op-amps, but there are also comparator ICs with large slew rates and short propagation delays - good for high speed switching

$V_{\text {out }}= \begin{cases}V_{\mathrm{S}+} & V_{1}>V_{2} \\ V_{\mathrm{S}-} & V_{1}<V_{2}\end{cases}$ Where V_{s} is the supply voltage

Inverting Adder:

$$
\begin{aligned}
& =i_{1}+i_{2}+i_{3}+i_{4} \\
& -\frac{V_{0}}{R_{f}}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\frac{V_{4}}{R_{4}} \xrightarrow{V_{1}}{ }^{V_{2}} V_{0}=-R_{f}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\frac{V_{4}}{R_{4}}\right)
\end{aligned}
$$

Example

Determine the output of the following summing amplifier

Solution
$R f=10 \mathrm{k} \Omega$ and $R=R 1=R 2=1.0 \mathrm{k} \Omega$. Thus,
VOUT $=-\mathrm{Rf} / \mathrm{R}(\mathrm{VIN} 1+\mathrm{VIN} 2)=-10 \mathrm{k} \Omega / 1 \mathrm{k} \Omega(0.2+0.5)=-7 \mathrm{~V}$

integrator

* The integrator is a circuit that produce a voltage output proportional to the area under a curve defined by a time depended function (time average of the input signal)
* The output is: where:

$$
V_{\text {out }}=-\frac{1}{R C} \int V_{\text {in }} d t
$$

$>\mathrm{V}_{\text {out }}$
output potential in [V]
$>\mathrm{V}_{\text {in }} \quad$ input signal potential in [V]
$>$ Rinput resistance in [W]

$>$ Cfeedback capacitance in [F]
$>t \quad$ the time in [sec]

- The integrator functions as low- pass filter

* The differentiator circuit produce a voltage output proportional to the time rate change of the input signal voltage.
* The outputis: where:
output potential in [V]
$>\mathrm{V}_{\text {in }} \quad$ input signal potential in [V]
$>\mathrm{R}$ feedback resistance in [W]
\Rightarrow C input capacitance in [F]
$>t \quad$ the time in [sec]

- $R C$ is time constant and must be very short
compared to time constant or period of the input signal
- The differentiator functions as a high-pass filter

