

Operational Amplifier (Op-Amp) A combination of transistors, resistors, capacitors that Amplifies the difference between two input voltages and Produces a single output

Operational Amplifier Packaging Most operational amplifies now available as "dual-inline packages" 14-lead dip package 8-lead minidip package Can contain more than one op-amp

Op-Amp Parameters

A_{od} = differential or open-loop gain Output: \bullet 180° out of phase with v₁ (inverting) In phase with v₂ (non-inverting) Op-amp responds only to differences between v_2 and v_1 • Common-mode signal when $v_2 = v_1 \neq 0$ Characteristic called "common-mode" rejection"

Ideal Op-Amp Characteristics

- Effective input resistance = infinity
- Effective output resistance = zero
- Internal differential gain, A_{od} = infinity
- Differential input voltage (v₂-v₁) = zero
- Operation of op-amp without external control is impractical

Op-amp

- It has two inputs: the inverting input (-) and the noninverting input (+), and one output.
- It has usually two supplies (±V_{ss}) but it can work with one.

	Ideal Op Amp	Typical Op Amp
Open-loop voltage gain A	œ	$10^5 - 10^9$
Common mode voltage gain	0	10 ⁻⁵
Frequency response f	œ	1- 20 MHz
Input impedance Z _{in}	œ	10 ⁶ Ω (bipolar) 10 ⁹ –10 ¹² Ω (FET)
Output impedance Z _{out}	0	50 – 1000 Ω

Output signal shape of Op-amp

✤ Inverting mode:
 ▶ Invert the input signal.
 ▶ V_o= -AV_{in}.

Non-inverting mode (follower):

> Input signal dose not change.

 $> V_o = +1V_{in}$

Unity gain non-inverting amplifier (follower)

- A special case of the non-inverting amplifier
- The resistor network is not used in this circuit
- The output is connected directly to the inverting input
- Used in output buffering and impedance matching bw. a high source impedance and low-impedance input circuit

$$A = \frac{V_{out}}{V_{in}} = +1 \qquad V_{out} = V_{in}$$

Comparator

- a comparator is a device which compares two voltages or currents and switches its output to indicate which is larger (one is reference)
- Very useful for comparing signals and working with sensors
- Comparator circuits can be built with op-amps, but there are also comparator ICs with large slew rates and short propagation delays - good for high speed switching

Example

Determine the output of the following summing amplifier

Solution

Rf = 10 kΩ and R = R1 = R2 = 1.0 kΩ. Thus, VOUT = -Rf/R(VIN1 + VIN2) = -10 kΩ/1 kΩ (0.2 + 0.5) = -7V

integrator

- The integrator is a circuit that produce a voltage output proportional to the area under a curve defined by a time depended function (time average of the input signal)
- The output is: where:

$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

V_{out}

[V]

- output potential in [V] input signal potential in
- > Rinput resistance in [W]
- Cfeedback capacitance in [F]
- ➤ t the time in [sec]
- The integrator functions as low- pass filter

