الأفةهار المركزذــة

1- connection and parallel CSC.
2 - voltage in parallel circuits
3 - current in parallel circuits
4-Total Resistance =
5-Total Conductance 6 - Power
7-CDR
8 - Example
9 -Homeworks

1-Parallel Resistors Conection

Two elements, branches, or circuits are in parallel if they have two points in common as in the figure below

(a)

(b)

(c)

Q- Write the CSC of parallel Resistors

1- Same voltage is on all Resistances $\mathrm{E}=\mathrm{V} 1=\mathrm{V} 2$
2- Current is shared between the Resistances
3 - Current in each Resistor is given by ohm ,s Law
4- Total Current is equal to the sum of branche Currents

$$
I=|1+| 2
$$

5- Total Resistance is given by

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots+\frac{1}{R_{N}}
$$

6- Total Conductance is the sum of parallel conductance

$$
G t=G 1+G 2 \quad G=1 / R
$$

7- For equal Resistors

$$
R_{T}=\frac{R}{N}
$$

8- The smaller the Resistance , the greater the current 9 - Total power is the sum of powers in each Resistor
voltage is the same in all parts of the circuit.

PARALLEL CIRCUIT

- curnent is shared
between the
components

3-Total current

For single-source parallel networks, the source current $\left(I_{s}\right)$ is equal to the sum of the individual branch currents.

$$
I_{s}=I_{1}+I_{2}
$$

\succ For a parallel circuit, source current equals the sum of the branch currents. For a series circuit, the applied voltage equals the sum of the voltage drops.

4 - Branch Currents

For parallel circuits, the greatest current will exist in the branch with the lowest resistance.

$$
I_{s}=I_{1}+I_{2}=\frac{E}{R_{1}}+\frac{E}{R_{2}}
$$

5- Total Parallel Resistors

For resistors in parallel, the total resistance is determined from

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots+\frac{1}{R_{N}}
$$

6 - Total Parallel Resistors Formula

The total resistance of two resistors is the product of the two divided by their sum.

$$
\text { If } \quad \mathrm{R} 1 / / \mathrm{R} 2 \quad R_{r}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

$$
\text { If } \mathrm{Rl} / / \mathrm{R} 2 / / \mathrm{R} 3 \quad \mathrm{Rt}=\frac{R 1 R 2 R 3}{R 1 R 2+R 2 R 3+R 3 R 1}
$$

7 - Parallel Resistors

For equal resistors in parallel:

$$
R_{T}=\frac{R}{N}
$$

Where $\mathrm{N}=$ the number of parallel resistors.

8 -Total conductance

For parallel elements, the total conductance is the sum of the individual conductance values.

$G_{T}=G_{1}+G_{2}+G_{3}+\ldots+G_{N}$

\succ As the number of resistors in parallel increases, the input current level will increase for the same applied voltage.
\succ This is the opposite effect of increasing the number of resistors in a series circuit.
\succ For any resistive circuit, the power applied by the battery will equal that dissipated by the resistive elements.

$P_{E}=P_{R_{1}}+P_{R_{2}}+P_{R_{3}}+\ldots+P_{R_{N}}$

\Varangle The power relationship for parallel resistive circuits is identical to that for series resistive circuits.
ζ The current divider rule (CDR) is used to find the current through a resistor in a parallel circuit.

General points:

$$
f_{x}=\frac{R_{T}}{R_{x}} I_{T}
$$

\succ For two parallel elements of equal value, the current will divide equally.
\succ For parallel elements with different values, the smaller the resistance, the greater the share of input current.
\succ For parallel elements of different values, the current will split with a ratio equal to the inverse of their resistor values.

Example : 12 Two Resistances $3 \Omega, 6 \Omega$ are connected in parallel to 12 V supply, calculate :
1- Total Resistance 2 - Total current 3 - branch current 4 - total power consumed
Solution :

$$
1-\mathrm{Rt}=\mathrm{R} 1 / / \mathrm{R} 2=\frac{R 1 * R 2}{R 1+R 2}=\frac{3 * 6}{3+6}=2 \Omega
$$

$$
\begin{aligned}
2-\quad \mathrm{I} 1=\frac{v}{R 1}=\frac{12}{3} & =4 \mathrm{~A} \\
\mathrm{I} 2=\frac{V}{R 2}=\frac{12}{6} & =2 \mathrm{~A}
\end{aligned}
$$

$$
3-\mathrm{It}=\mathrm{I} 1+\mathrm{I} 2=4+2=6 \mathrm{~A}
$$

$$
\text { OR } \quad \mathrm{It}=\frac{V}{R t}=\frac{12}{2}=6 \mathrm{~A}
$$

$$
\text { 4- } \mathrm{P} 1=I 1^{2} R 1=4^{2} * 3=16 * 3=48 \mathrm{~W}
$$

$$
\mathrm{P} 2=I 2^{2} R 2=2^{2} * 6=4 * 6=24 \mathrm{~W}
$$

$$
\mathrm{Pt}=\mathrm{p} 1+\mathrm{p} 2=48+24=72 \mathrm{w}
$$

Or $\mathrm{Pt}=I t^{2} R t=6^{2} * 2=36 * 2=72 \mathrm{w}$

Example :13

Two Resistances $5 \Omega, 20 \Omega$ are connected in parallel , use (CDR) find the current through each resistor if the total current is (10 A)

Solution :

$$
\begin{aligned}
& \mathrm{I} 1=\frac{R 2}{R 1+R 2} I=\frac{20}{5+20} * 10=\frac{20}{25} * 10=8 \mathrm{~A} \\
& \mathrm{I} 2=\frac{R 1}{R 1+R 2} I=\frac{5}{5+20} * 10=\frac{5}{25} * 10=2 \mathrm{~A}
\end{aligned}
$$

Example: 14

For the circuit shown find :
1 - supply voltage
2 - ammeter reading

(a) Voltage across 20Ω resistor $=I_{2} R_{2}=3 \times 20=60 \mathrm{~V}$; hence, supply voltage $V=60 \mathrm{~V}$ since the circuit is connected in parallel.
(b) Current $I_{1}=\frac{V}{R_{1}}=\frac{60}{10}=6 \mathrm{~A} ; I_{2}=3 \mathrm{~A}$

$$
I_{3}=\frac{V}{R_{3}}=\frac{60}{60}=1 \mathrm{~A}
$$

Current $I=I_{1}+I_{2}+I_{3}$ and hence, $I=6+3+1=10 \mathrm{~A}$
Alternatively, $\frac{1}{R}=\frac{1}{60}+\frac{1}{20}+\frac{1}{10}=\frac{1+3+6}{60}=\frac{10}{60}$
Hence, total resistance $R=\frac{60}{10}=6 \Omega$
Current $I=\frac{V}{R}=\frac{60}{6}=10 \mathrm{~A}$

Example: 15

For the circuit shown find :
1- supply voltage
2- Total current
3 - Branch currents
4 - Total Resistance
5 - Total power deliverd
6 - Total power consumed

Solution

Volage across R_{1} is the same as the supply volage V. Hence, supply voliage $V=8 \times 5=40 \mathrm{~V}$.
(a) Reading on ammeter, $I=\frac{V}{R_{3}}=\frac{40}{20}=2 \mathrm{~A}$
(b) Curent flowing through $R_{2}=11-8-2=1 \mathrm{~A}$

Hence, $R_{2}=\frac{V}{l_{1}}=\frac{40}{1}=40 \Omega$

Example; $\mathbf{1 6}$ - find Rt \& Gt H.W

(d)
(b)

Example; 17 - find the value of \mathbf{R}

H.W

(4)
(b)

Example :18-Find the indicated current H.W

Example: 19- find the total Resistance [Rt] H.W

Example: 20 - find indicated currents and unknown Resistances H.W

$$
\begin{aligned}
& R_{1}=36 \Omega \\
& I_{3}=500 \mathrm{~mA} \\
& R_{2}=4 R_{1}
\end{aligned}
$$

Example: 21-find Rt H.W

Example: 22-find the indicated currents H.W

Example: 23-find the indicated currents

exampl:e: $\mathbf{2 4}$ - find the indicated currents [H.W]

Example;25 - find the indicated currents [$\mathrm{H} . \mathrm{W}$]

Node a

Example: 26 - find the unknown current and Resistances [H.W]

Example: 27- find the unknown Resistance

