

الأفكار المركزية

- 1- connection and series CSC
- 2 current in series circuits
- 3 voltage in series circuits
- 4- Total Resistance for series circuits
- 5 Total power in series circuits
- 6 Voltage divider
- 7 Examples and Homeworks

Series Connection of Resistors

Q1- Write Series connection csc

- 1- Same current is flow in all Resistances it =i1=i2
- 2-Voltage is shared between the Resistances
- 3 Voltage across each Resistor is given by ohm ,s Law V = IR
- 4- Total voltage is equal to the sum of voltage s E = V1 + V2 +
- 5- Total Resistance is the sum of series Resistances6- Total power is the sum of powers in each Resistor

Series CSC.

5- Total Resistance is the sum of series Resistances Rt = R1 + R2 +R3

- 6- For equal Resistors Rt = N R
- 7 The smaller the Resistor, the smaller voltage drop
- 6- Total power is the sum of powers in each Resistor

1 - Same current flow in the circuit (I1 = I2 = I)

SERIES CIRCUIT

 current is the same at all points in the circuit.

2A--Voltage is distributed between the components (E = V1 + V2)

voltage is shared between the components

2 B – Voltage across a resistors is given by ohm,s law $V_1 = IR_1$ $V_2 = IR_2$ $V_3 = IR_3$

The polarity of the voltage across a resistor is determined by the direction of the current

3 - The total resistance of a series configuration is the sum of the resistance level.

$R_{T} = R_{1} + R_{2} + R_{3} + R_{4} + \dots + R_{N}$

4 - Series Resistors

 \checkmark When series resistors have the same value,

$R_{T} = NR$

 \bigotimes Where N = the number of resistors in the string.

5 - Power Distribution in a Series Circuit

The power applied by the dc supply must equal that dissipated by the resistive elements.

$$P_{E} = P_{R_{1}} + P_{R_{2}} + \dots + P_{R_{N}}$$

PI = VI II =
$$I^2 R 1 = \frac{V 1^2}{R 1}$$

P2 = V2 I2 = $I^2 R 2 = \frac{V 2^2}{R 2}$
Pt = VI = $I^2 R t$

6 – Voltage Division in a Series Circuit

♂ The voltage across the resistive elements will divide as the magnitude of the resistance levels.

∀Voltage Divider Rule (VDR)

The VDR permits determining the voltage levels of a circuit without first finding the current.

$$V_{X} = R_{X} \frac{E}{R_{T}}$$

Problem 1. For the circuit shown in Fig. 5.2, determine (a) the battery voltage V, (b) the total resistance of the circuit, and (c) the values of resistors R_1 , R_2 and R_3 , given that the p.d.'s across R_1 , R_2 and R_3 are 5 V, 2 V and 6 V respectively.

(a) Battery voltage $V = V_1 + V_2 + V_3$ = 5 + 2 + 6 = 13 V (b) Total circuit resistance $R = \frac{V}{I} = \frac{13}{4} = 3.25 \,\Omega$ (c) Resistance $R_1 = \frac{V_1}{I} = \frac{5}{4} = 1.25 \,\Omega$ Resistance $R_2 = \frac{V_2}{I} = \frac{2}{A} = 0.5 \,\Omega$ Resistance $R_3 = \frac{V_3}{I} = \frac{6}{4} = 1.5 \Omega$ (Check: $R_1 + R_2 + R_3 = 1.25 + 0.5 + 1.5$ $= 3.25 \Omega = R$

Problem 2. For the circuit shown in Fig. 5.3, determine the p.d. across resistor R_3 . If the total resistance of the circuit is 100Ω , determine the current flowing through resistor R_1 . Find also the value of resistor R_2 .

Figure 5.3

P.d. across R_3 , $V_3 = 25 - 10 - 4 = 11 \text{ V}$ Current $I = \frac{V}{R} = \frac{25}{100} = 0.25 \text{ A}$,

which is the current flowing in each resistor

Resistance $R_2 = \frac{V_2}{I} = \frac{4}{0.25} = 16 \Omega$

Problem 3. A 12V battery is connected in a circuit having three series-connected resistors having resistance's of 4Ω , 9Ω and 11 Ω . Determine the current flowing through, and the p.d. across the 9Ω resistor. Find also the power dissipated in the 11Ω resistor.

The circuit diagram is shown in Fig. 5.4

Total resistance $R = 4 + 9 + 11 = 24 \Omega$

Current
$$I = \frac{V}{R} = \frac{12}{24} = 0.5 \text{ A},$$

Figure 5.4

which is the current in the 9 Ω resistor. P.d. across the 9 Ω resistor,

$$V_1 = I \times 9 = 0.5 \times 9 = 4.5 V$$

Power dissipated in the 11Ω resistor,

$$P = I^2 R = (0.5)^2 (11)$$

= (0.25)(11) = 2.75 W

Example – 4 For the ckt find voltage drops across each resistor

$$V_{\rm T} = 4.32 \,{\rm V} + 8.64 \,{\rm V} + 5.04 \,{\rm V} = 18.0 \,{\rm V} = E$$

Problem 5. Two resistors are connected in series across a 24 V supply and a current of 3 A flows in the circuit. If one of the resistors has a resistance of 2Ω determine (a) the value of the other resistor, and (b) the p.d. across the 2Ω resistor. If the circuit is connected for 50 hours, how much energy is used?

The circuit diagram is shown in Fig. 5.8

(a) Total circuit resistance

$$R = \frac{V}{I} = \frac{24}{3} = 8\,\Omega$$

Figure 5.8

Value of unknown resistance,

 $R_{\rm x}=8-2=6\,\Omega$

(b) P.d. across 2 Ω resistor,

 $V_1 = IR_1 = 3 \times 2 = 6 V$

Alternatively, from above,

$$V_1 = \left(\frac{R_1}{R_1 + R_x}\right) \mathbf{V}$$
$$= \left(\frac{2}{2+6}\right)(24) = 6 \mathbf{V}$$

Energy used = power \times time

=
$$(V \times I) \times t$$

= $(24 \times 3 \text{ W})(50 \text{ h})$
= $3600 \text{ Wh} = 3.6 \text{ kWh}$

Example - 6 find the voltage drops across each resistor by using VDR

$$V_{1} = \frac{R_{1}E}{R_{T}} = \frac{(2 \text{ k}\Omega)(45 \text{ V})}{2 \text{ k}\Omega + 5 \text{ k}\Omega + 8 \text{ k}\Omega} = \frac{(2 \text{ k}\Omega)(45 \text{ V})}{15 \text{ k}\Omega}$$
$$= \frac{(2 \times 10^{3} \Omega)(45 \text{ V})}{15 \times 10^{3} \Omega} = \frac{90 \text{ V}}{15} = 6 \text{ V}$$
$$V_{3} = \frac{R_{3}E}{R_{T}} = \frac{(8 \text{ k}\Omega)(45 \text{ V})}{15 \text{ k}\Omega} = \frac{(8 \times 10^{3} \Omega)(45 \text{ V})}{15 \times 10^{3} \Omega}$$
$$= \frac{360 \text{ V}}{15} = 24 \text{ V}$$

Solution:

Example :

Three Resistances $R1 = 2k \Omega$, $R2 = 5 k\Omega$, $R3 = 8 k\Omega$ are connected inseries to E = 45 V supply Use voltage devider law determine the voltage V1, V2, V3

Solution : $Rt = 2k + 5k + 8k = 15 k\Omega$ $V1 = \frac{R1}{Rt} E = \frac{2k}{15k} * 45 = 6V$ $V2 = \frac{R2}{Rt} E = \frac{5k}{15k} * 45 = 15V$ $V3 = \frac{R3}{Rt} E = \frac{8k}{15k} * 45 = 24 V$ Example :

-

Two resistors $R1 = 4 \Omega$ $R2 = 6 \Omega$ are connected in series to supply 20 v calculate

- 1 Total Resistance
- 2 Total Current
- 3 Voltage across each resistor
- 4-Total Power

$$2 - \text{It} = \frac{V}{Rt} = \frac{20}{10} = 2\text{A}$$

 $P_{+} = P_{1} \pm P_{2} = 4 \pm 6 = 100$

V2 = IR2 = 2 * 6 = 12 V

4 - P1 = $I^2 R1$ = $2^2 * 4$ = 4 * 4 = 16 W

 $P2 = I^2 R2 = 2^2 * 6 = 4 * 6 = 24 W$

Pt = p1 + p2 = 16 + 24 = 40 w

 $Pt = I^2 Rt = 2^2 * 10 = 4 * 10 = 40 w$

Example : 9 H.W

four resistors 5 , 10 ,15 , 20 Ω are connected in series to ($\,100$ v) supply determine

- 1 Total Resistance
- 2 Total current
- 3 voltage drop across each resistor
- 4 Total Power consumed
- 5 Total Power deliverd

Example : 10 (H.W)

For the circuit shown in Fig. 5.9, determine the value of V_1 . If the total circuit resistance is 36 Ω determine the supply current and the value of resistors R_1 , R_2 and R_3

Figure 5.9

Example :11-When the switch in the circuit (5-10) is closed the reading on voltmrter 1 is 30 v and that on voltmeter 2 is 10 v Determine the reading on the ammeter and the value of resistor R2 (H.W)

