$\|=\| \# \# \#\|\unrhd\|=\|\# \# \#\|\|\Perp\|=\| \# \#$ $=\|=\| \# \#\| \|\| \|=\|=\|\| \|=\|=\|=\| \#$

Electrical Circuits Series dc Circuits

$\|=\|$
By

In
$\stackrel{\|}{\|}$

Hilal Falib Yaseen

$\|$

|
$\overline{\overline{\underline{\# n}\|\|}}$

الأفكار المركزيـة

1- connection and series CSC
2 - current in series circuits
3- voltage in series circuits
4- Total Resistance for series circuits
5 - Total power in series circuits
6 - Voltage divider
7 - Examples and Homeworks

Series Connection of Resistors

Here's How Resistors Add in Series

Equivalent Resistance

Q1- Write Series connection csc

1- Same current is flow in all Resistances it $=\mathrm{i} 1=\mathrm{i} 2$
2- Voltage is shared between the Resistances
3 - Voltage across each Resistor is given by ohm ,s Law

$$
V=\mathbb{I}
$$

4- Total voltage is equal to the sum of voltage s

$$
\mathrm{E}=\mathrm{V} 1+\mathrm{V} 2+
$$

5- Total Resistance is the sum of series Resistances
6- Total power is the sum of powers in each Resistor

Series CSC.

5- Total Resistance is the sum of series Resistances

$$
R t=R 1+R 2+R 3
$$

6- For equal Resistors $\quad \mathrm{Rt}=\mathrm{NR}$
7 - The smaller the Resistor , the smaller voltage drop
6 - Total power is the sum of powers in each Resistor

1-Same current flow in the circuit [l1 = [2 =]]

SERIES CIRCUIT

|

- current is the same at all points in the circuit.

2A-Voltage Is dilistributed hetween the components [$\mathrm{E}=\mathbf{V 1}+\mathbf{V 2}$]

- voltage is shared between the components

2 B - Voltage across a resistors is given by ohm,s law
 $$
V_{1}=I R_{1} \quad V_{2}=I R_{2} \quad V_{3}=I R_{3}
$$

The polarity of the voltage across a resistor is determined by the direction of the current

3 - The total resistance of a series configuration is the sum of the resistance level.

$$
R_{T}=R_{1}+R_{2}+R_{3}+R_{4}+\ldots+R_{N}
$$

4 - Series Resistors

\succ When series resistors have the same value,

$$
R_{T}=N R
$$

Where $N=$ the number of resistors in the string.

5 - Power Distribution in a Series Circuit

The power applied by the dc supply must equal that dissipated by the resistive elements.

$$
\begin{gathered}
P_{E}=P_{R_{1}}+P_{R_{2}}+\ldots+P_{R_{N}} \\
\mathrm{Pl}=\mathrm{V} 1 \mathrm{Il}=I^{2} R 1=\frac{V 1^{2}}{R 1} \\
\mathrm{P} 2=\mathrm{V} 2 \mathrm{I} 2=I^{2} R 2=\frac{V 2^{2}}{R 2} \\
\mathrm{Pt}=\mathrm{VI} \quad=I^{2} R t
\end{gathered}
$$

6-Voltage Division in a Series Circuit

The voltage across the resistive elements will divide as the magnitude of the resistance levels.

The greater the value of a resistor in a series circuit, the more of the applied voltage it will capture.
\bigcirc Voltage Divider Rule (VDR)
\bigcirc The VDR permits determining the voltage levels of a circuit without first finding the current.

$$
V_{x}=R_{x} \frac{E}{R_{T}}
$$

Problem 1. For the circuit shown in Fig. 5.2, determine (a) the battery voltage V, (b) the total resistance of the circuit, and (c) the values of resistors R_{1}, R_{2} and R_{3}, given that the p.d.'s across R_{1}, R_{2} and R_{3} are $5 \mathrm{~V}, 2 \mathrm{~V}$ and 6 V respectively.

Figure 5.2
(a) Battery voltage $V=V_{1}+V_{2}+V_{3}$

$$
=5+2+6=13 \mathrm{~V}
$$

(b) Total circuit resistance $R=\frac{V}{I}=\frac{13}{4}=3.25 \Omega$
(c) Resistance $R_{1}=\frac{V_{1}}{I}=\frac{5}{4}=1.25 \Omega$

Resistance $R_{2}=\frac{V_{2}}{I}=\frac{2}{4}=0.5 \Omega$
Resistance $R_{3}=\frac{V_{3}}{I}=\frac{6}{4}=1.5 \Omega$
(Check: $R_{1}+R_{2}+R_{3}=1.25+0.5+1.5$ $=3.25 \Omega=R)$

Problem 2. For the circuit shown in Fig. 5.3, determine the p.d. across resistor R_{3}. If the total resistance of the circuit is 100Ω, determine the current flowing through resistor R_{1}. Find also the value of resistor R_{2}.

Figure 5.3
P.d. across $R_{3}, V_{3}=25-10-4=11 \mathrm{~V}$

$$
\text { Current } I=\frac{V}{R}=\frac{25}{100}=0.25 \mathrm{~A},
$$

which is the current flowing in each resistor

$$
\text { Resistance } R_{2}=\frac{V_{2}}{I}=\frac{4}{0.25}=16 \Omega
$$

Problem 3. A 12 V battery is connected in

 a circuit having three series-connected resistors having resistance's of $4 \Omega, 9 \Omega$ and 11Ω. Determine the current flowing through, and the p.d. across the 9Ω resistor. Find also the power dissipated in the 11Ω resistor.The circuit diagram is shown in Fig. 5.4
Total resistance $R=4+9+11=24 \Omega$

$$
\text { Current } I=\frac{V}{R}=\frac{12}{24}=0.5 \mathrm{~A},
$$

Figure 5.4

Figure 5.4
which is the current in the $9 S 2$ resistor. Pad. across the $9 \leq$ resistor.

$$
V_{1}=I \times 9=0.5 \times 9=4.5 V
$$

Power dissipated in the 11Ω resistor,

$$
\begin{aligned}
P & =r^{2} R=(0.5)^{2}(11) \\
& =(0.25)(11)=2.75 \mathrm{~W}
\end{aligned}
$$

Example - 4 For the ckt find voltage drops across each resistor

Solution

$$
\begin{aligned}
& R_{\mathrm{T}}=6 \Omega+12 \Omega+7 \Omega=25.0 \Omega \\
& V_{1}=\left(\frac{6 \Omega}{25 \Omega}\right)(18 \mathrm{~V})=4.32 \mathrm{~V} \\
& V_{2}=\left(\frac{12 \Omega}{25 \Omega}\right)(18 \mathrm{~V})=8.64 \mathrm{~V} \\
& V_{3}=\left(\frac{7 \Omega}{25 \Omega}\right)(18 \mathrm{~V})=5.04 \mathrm{~V}
\end{aligned}
$$

The total voltage drop is the summation

$$
V_{\mathrm{T}}=4.32 \mathrm{~V}+8.64 \mathrm{~V}+5.04 \mathrm{~V}=18.0 \mathrm{~V}=E
$$

Problem 5. Two resistors are connected in series across a 24 V supply and a current of 3 A flows in the circuit. If one of the resistors has a resistance of 2Ω determine (a) the value of the other resistor, and (b) the p.d. across the 2Ω resistor. If the circuit is connected for 50 hours, how much energy is used?

The circuit diagram is shown in Fig. 5.8

(a) Total circuit resistance

$$
R=\frac{V}{I}=\frac{24}{3}=8 \Omega
$$

Figume 5.8

Value of unknown resistance,

$$
R_{\mathrm{x}}=8-2=6 \Omega
$$

(b) P.d. across 2Ω resistor,

$$
V_{1}=I R_{1}=3 \times 2=6 \mathrm{~V}
$$

Alternatively, from above,

$$
\begin{aligned}
V_{1} & =\left(\frac{R_{1}}{R_{1}+R_{\mathrm{x}}}\right) \mathrm{V} \\
& =\left(\frac{2}{2+6}\right)(24)=6 \mathrm{~V}
\end{aligned}
$$

Energy used $=$ power \times time

$$
\begin{aligned}
& =(V \times I) \times t \\
& =(24 \times 3 \mathrm{~W})(50 \mathrm{~h}) \\
& =3600 \mathrm{~Wh}=3.6 \mathrm{kWh}
\end{aligned}
$$

Example - 6 find the voltage drops across each resistor by using VDR

Solution:

$$
\begin{aligned}
V_{1} & =\frac{R_{1} E}{R_{T}}=\frac{(2 \mathrm{k} \Omega)(45 \mathrm{~V})}{2 \mathrm{k} \Omega+5 \mathrm{k} \Omega+8 \mathrm{k} \Omega}=\frac{(2 \mathrm{k} \Omega)(45 \mathrm{~V})}{15 \mathrm{k}!} \\
& =\frac{\left(2 \times 10^{3} \Omega\right)(45 \mathrm{~V})}{15 \times 10^{3} \Omega}=\frac{90 \mathrm{~V}}{15}=6 \mathrm{~V} \\
V_{3} & =\frac{R_{1} E}{R_{T}}=\frac{(8 \mathrm{k} \Omega)(45 \mathrm{~V})}{15 \mathrm{k}!}=\frac{\left(8 \times 10^{3} \Omega\right)(45 \mathrm{~V})}{15 \times 10^{3} \Omega} \\
& =\frac{360 \mathrm{~V}}{15}=24 \mathrm{~V}
\end{aligned}
$$

Example:

Three Resistances $\mathrm{R} 1=2 \mathrm{k} \Omega, \mathrm{R} 2=5 \mathrm{k} \Omega \quad, \mathrm{R} 3=8 \mathrm{k} \Omega$ are connected inseries to $\mathrm{E}=45 \mathrm{~V}$ supply Use voltage devider law determine the voltage V1, V2, V3

Solution :
$\mathrm{Rt}=2 \mathrm{k}+5 \mathrm{k}+8 \mathrm{k}=15 \mathrm{k} \Omega$
$\mathrm{V} 1=\frac{R 1}{R t} E \quad=\frac{2 k}{15 k} * 45=6 \mathrm{~V}$
$\mathrm{V} 2=\frac{R 2}{R t} E=\frac{5 k}{15 k} * 45=15 \mathrm{~V}$
$\mathrm{V} 3=\frac{R 3}{R t} E=\frac{8 k}{15 k} * 45=24 \mathrm{~V}$

Example:
Two resistors $\mathrm{R} 1=4 \Omega \quad \mathrm{R} 2=6 \Omega$ are connected in series to supply 20 v calculate
1 - Total Resistance
2-Total Current
3 - Voltage across each resistor
4 - Total Power

$$
\begin{aligned}
& 1-\mathrm{Rt}=\mathrm{R} 1+\mathrm{R} 2=4+6=10 \Omega \\
& 2-\mathrm{It}=\frac{V}{R t}=\frac{20}{10}=2 \mathrm{~A} \\
& 3-\mathrm{V} 1=\mathrm{IR} 1=2 * 4=8 \mathrm{~V} \\
& \mathrm{~V} 2=\mathrm{IR} 2=2 * 6=12 \mathrm{~V} \\
& 4-\mathrm{P} 1=I^{2} \mathrm{R} 1=2^{2}=4 \quad=4 * 4=16 \mathrm{~W} \\
& \mathrm{P} 2=I^{2} R 2=2^{2} * 6 \quad=4 * 6=24 \mathrm{~W} \\
& \mathrm{Pt}=\mathrm{P} 1+\mathrm{P} 2=16+24=40 \mathrm{w} \\
& \mathrm{Pt}=I^{2} R t=2^{2} * 10 \quad=4 * 10=40 \mathrm{w}
\end{aligned}
$$

Example:9

four resistors $5,10,15,20 \Omega$ are connected in series to (100 v) supply determine
1 - Total Resistance
2 - Total current
3 - voltage drop across each resistor
4 - Total Power consumed
5 - Total Power deliverd

Example:10 [H.W]

For the circuit shown in Fig. 5.9, determine the value of V_{1}. If the total circuit resistance is 36Ω determine the supply current and the value of resistors R_{1}, R_{2} and R_{3}

Figure 5.9

Example : 11 -When the switch in the circuit ($5-10$) is closed the reading on voltmrter 1 is 30 v and that on voltmeter 2 is 10 v Determine the reading on the ammeter and the value of resistor R2 (H.W)

Figure 5.10

