Ministry of high Education and Scientific Research Foundation of Technical Education Technical Institute of kufa

Power Electronics

For Students of second class electrical department By jaafer sadiq jaafer Lecturer in electrical Dep.

Week No -1

- Power electronic
- Electronic components used in power electronics
 - Power Diode
 - Power transistor
 - Thyristor
- Prevision of single phase rectifier circuits by using diode

What is Power Electronics ?

- Conversion of *Large Amounts of* Electric Power and Energy
 - ac to dc
 - dc to ac
 - dc to dc
 - ac to ac

The main disadvantages of half wave rectifier are:

- 1- High ripple factor,
- 2-Low rectification efficiency,
- 3- Low transformer utilization factor, and,
- 4- DC saturation of transformer secondary winding.

Performance Parameters

- Average value of the output voltage, V_{dc}
- Average value of the output current, I_{dc}
- Output dc power, P_{dc}
 - $-P_{dc} = V_{dc}I_{dc}$
- rms value of the input voltage, V_{rms}
- Output ac power, P_{ac}

$$-\mathbf{P}_{ac} = \mathbf{V}_{rms}\mathbf{I}_{rms}$$

Performance Parameters (continued)

• Efficiency , η

$$\eta = P_{dc} / P_{ac}$$

- Effective (rms) value of the ac component of the output voltage, V_{ac}

$$V_{ac} = \sqrt{V_{rms}^2 - V_{dc}^2}$$

• Form factor, FF

$$FF = V_{rms} / V_{dc}$$

• Ripple factor, RF

$$RF = V_{ac} / V_{dc}$$

Performance Parameters

• Alternate form for ripple factor

$$RF = \sqrt{(\frac{V_{rms}}{V_{dc}})^2} - 1 = \sqrt{FF^2 - 1}$$

- Transformer utilization factor, TUF TUF = $P_{dc} / V_s I_s$ V_s , I_s are rms voltage and current of the
 - transformer secondary

$$f = \frac{1}{T}$$
$$\omega = 2\pi f$$
$$V_{dc} = \frac{V_{m}}{\pi} = 0.318 Vm$$

Determine the PIV

• PIV is the maximum (peak) voltage that appears across the diode when reverse biased. Here, PIV = V_m .

Average Output Voltage

Comparison among topologies 1-Ph.

- Secondary voltage is sinusoidal: v_s(t) = V_s sin (2πf_{mains}t)
- Resistive Load
- Ideal devices (no device losses)

$V_{p}(t)$	\cap	\sim	Vs	(t)	N
	C	L			T

Parameter	Half-Wave	Full - Wave (Center-tapped)	Full - Wave (Bridge)
Rectified Voltage - V _{DC}	V _s /π = 0.318 ·V _s	2 ·V _s /π = 0.636 ·V _s	2 ·V _s /π = 0.636 ·V _s
rms Output Voltage - V _L	V _s /2 = 0.318 ·V _s	V _s /√2 = 0.707 ·V _s	V _s /√2 = 0.707 ·V _s
Form Factor - FF	1.57	1.11	1.11
Rectification Ratio - η	0.405	0.81	0.81
Ripple Factor - RF	1.21	0.482	0.482
Transformer Utilization Factor - TUF	0.286	0.572	0.81
Diode Peak Inverse Voltage (PIV) - V _{RRM}	$V_s = \pi \cdot V_{DC}$	$2 \cdot V_s = \pi \cdot V_{DC}$	$V_s = \pi/2 \cdot V_{DC}$
Peak Direct Voltage (PDV - thyristors only) - V _{DRM}	$V_s = \pi \cdot V_{DC}$	$2 \cdot V_s = \pi \cdot V_{DC}$	$V_s = \pi/2 \cdot V_{DC}$
Diode Peak Forward Current - I _{FRM}	$\pi \cdot \mathbf{I}_{DC}$	$\pi/2 \cdot \mathbf{I}_{DC}$	$\pi/2 \cdot I_{DC}$
Diode Average Current - I _{F(AV)}	I _{DC}	0.5 · I _{DC}	0.5 · I _{DC}
Diode Rms Current - IF(RMS)	π/2 · I _{DC}	π/4 · I _{DC}	$\pi/4 \cdot I_{DC}$
Fundamental Ripple Frequency - f _R	f _{mains}	2 · f _{mains}	2 · f _{mains}

Waveforms for the Full-Wave Bridge

