Ministry of high Education and Scientific Research Foundation of Technical Education

 Technical Institute of kufa

 Technical Institute of kufa}

Power Electronics

For Students of second class electrical department By jaafer sadiq jaafer Lecturer in electrical Dep.

Week No -1

- Power electronic
- Electronic components used in power electronics
- Power Diode
- Power transistor
- Thyristor
- Prevision of single phase rectifier circuits by using diode

What is Power Electronics ?

- Conversion of Large Amounts of Electric Power and Energy
- ac to dc
- dc to ac
- dc to dc
- ac to ac

Diagram Block of Converters

Diode Rectifier

Half Bridge Rectifier

II

Half Bridge Rectifier with Smoothing Inductor

\square

Diode Rectifier (Cnt'd)

With Free-Wheeling Diode

Full Bridge Rectifier

Single phase uncontrolled resistive load rectifier

(a) circuit diagram

The main disadvantages of half wave rectifier are:
1- High ripple factor,
2- Low rectification efficiency,
3- Low transformer utilization factor, and,
4- DC saturation of transformer secondary winding.

Single phase full wave uncontrolled resistive load rectifier

Full-wave diode rectifier

Ripple of voltage and current is High

Performance Parameters

- Average value of the output voltage, V_{dc}
- Average value of the output current, $I_{d c}$
- Output dc power, P_{dc}
$-P_{d c}=V_{d c} I_{d c}$
- rms value of the input voltage, $\mathrm{V}_{\text {rms }}$
- Output ac power, P_{ac}
$-P_{\mathrm{ac}}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}$

Performance Parameters (continued)

- Efficiency , η

$$
\eta=P_{\mathrm{dc}} / P_{\mathrm{ac}}
$$

- Effective (rms) value of the ac component of the output voltage, V_{ac}

$$
V_{\mathrm{ac}}=\sqrt{\mathrm{V}_{\mathrm{rms}}{ }^{2}-V_{\mathrm{dc}}{ }^{2}}
$$

- Form factor, FF

$$
\mathrm{FF}=\mathrm{V}_{\mathrm{rms}} / \mathrm{V}_{\mathrm{dc}}
$$

- Ripple factor, RF

$$
\mathrm{RF}=\mathrm{V}_{\mathrm{ac}} / \mathrm{V}_{\mathrm{dc}}
$$

Performance Parameters

- Alternate form for ripple factor

$$
R F=\sqrt{\left(\frac{V_{\mathrm{ms}}}{\mathrm{~V}_{\mathrm{c}}}\right)^{2}}-1=\sqrt{\mathrm{FF}^{2}-1}
$$

- Transformer utilization factor, TUF

TUF $=\mathrm{P}_{\mathrm{dc}} / \mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}$
V_{s}, I_{s} are rms voltage and current of the transformer secondary

- Determine η, FF, RF,TUF, PIV of the diode, when $V_{s}=120$ Sin $w t, R_{L}=12 \Omega$.

Determine the Average Voltage, V_{dc}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{dc}}=\frac{1}{\mathrm{~T}} \int_{\mathrm{o}}^{\mathrm{T}} \mathrm{~V}(\mathrm{t}) \mathrm{dt} \\
& \mathrm{~V}_{\mathrm{dc}}=1{ }_{\mathrm{T}}^{1} \int_{\mathrm{t}}^{\mathrm{T}} \mathrm{~V}_{\mathrm{m}} \sin \omega \mathrm{tdt} \\
& \mathrm{~V}_{\mathrm{dc}}=-\frac{\mathrm{V}_{\mathrm{m}}}{\omega \mathrm{~T}}\left(\cos \frac{\omega \mathrm{~T}}{2}-1\right)
\end{aligned}
$$

1

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{\mathrm{~T}} \\
& \omega=2 \pi \mathrm{f} \\
& \mathrm{~V}_{\mathrm{dc}}=\frac{\mathrm{V}_{\mathrm{m}}}{\pi}=0.318 \mathrm{Vm}
\end{aligned}
$$

Determine the rms Voltage, $\mathrm{V}_{\text {rms }}$

$$
\left.\left.\mathrm{V}_{\mathrm{rms}}=\Gamma_{-}^{-} \int_{0}^{\mathrm{T}} \mathrm{~V} \sin \omega \mathrm{t}\right)^{2} \mathrm{dt}\right]^{2}
$$

$$
\begin{array}{c|c|}
\text {,"' } & \text { тт }
\end{array}
$$

$$
\mathrm{V}_{\mathrm{tm}}=\frac{\mathrm{V}_{\mathrm{m}}}{2}=0.5 \mathrm{~V}_{\mathrm{m}}
$$

$$
\begin{aligned}
& \text { Determine } P_{d c} P_{a c} \text { and } \eta \\
& \left.P_{d c}=\frac{(0.318 \mathrm{~V}}{\mathrm{R}}\right)^{2} \\
& \mathrm{P}_{\mathrm{sc}}=\frac{\left(0.5 \mathrm{~V}_{\mathrm{m}}\right)^{2}}{\mathrm{R}} \\
& \eta=\frac{(0.318 \mathrm{~V})^{2}}{\left(0.5 \mathrm{~V}_{\mathrm{m}}\right)^{2}}=40.5 \%
\end{aligned}
$$

Determine the PIV

- PIV is the maximum (peak) voltage that appears across the diode when reverse biased. Here, PIV = V_{m}.

Half-Wave Rectifier with R-L Load

Waveforms of Current and Voltage

Conduction period of D_{1} extends beyond $\omega t=\pi$

Average Output Voltage

$$
\begin{aligned}
V_{d c} & =\frac{V_{m}}{2 \pi} \int_{0}^{\pi+\sigma} \sin \omega t d(\omega t) \\
V_{d c} & =\frac{V_{m}}{2 \pi}[-\cos \omega t]_{0}^{\pi+\sigma} \\
V_{d c} & =\frac{V_{m}}{2 \pi}[1-\cos (\pi+\sigma)] \\
I_{d c} & =\frac{V_{d c}}{R}
\end{aligned}
$$

Increase average voltage and current by making $\sigma=0$
\square

Comparison among topologies 1-Ph.

```
\(=\) Secondary voltage is sinusoidal: \(v_{s}(t)=\mathrm{V}_{\mathrm{s}} \sin \left(2 \pi f_{\text {mains }} \dagger\right)\)
- Resistive Load
- Ideal devices (no device losses)
```


Parameter	Half-Wave	Full - Wave (Center-tapped)	Full - Wave (Bridge)
Rectified Voltage - V_{DC}	$\mathrm{V}_{s} / \pi=0.318 \cdot \mathrm{~V}_{\mathrm{s}}$	$2 \cdot V_{s} / \pi=0.636 \cdot V_{s}$	$2 \cdot V_{s} / \pi=0.636 \cdot V_{s}$
rms Output Voltage - V_{L}	$\mathrm{V}_{s} / 2=0.318 \cdot \mathrm{~V}_{s}$	$\mathrm{V}_{s} / \sqrt{ } 2=0.707 \cdot \mathrm{~V}_{s}$	$\mathrm{V}_{s} / \sqrt{ } 2=0.707 \cdot \mathrm{~V}_{s}$
Form Factor - FF	1.57	1.11	1.11
Rectification Ratio- η	0.405	0.81	0.81
Ripple Factor - RF	1.21	0.482	0.482
Transformer Utilization Factor - TUF	0.286	0.572	0.81
Diode Peak Inverse Voltage (PIV) - $\mathrm{V}_{\text {RRM }}$	$\mathrm{V}_{\mathrm{s}}=\pi \cdot \mathrm{V}_{\text {D }}$	$2 \cdot V_{s}=\pi \cdot V_{D C}$	$V_{s}=\pi / 2 \cdot V_{D C}$
Peak Direct Voltage (PDV - thyristors only) - $\mathrm{V}_{\text {DRM }}$	$V_{s}=\pi \cdot V_{D C}$	$2 \cdot V_{s}=\pi \cdot V_{D C}$	$V_{s}=\pi / 2 \cdot V_{D C}$
Diode Peak Forward Current - $I_{\text {FRM }}$	$\pi \cdot I_{D C}$	$\pi / 2 \cdot I_{D C}$	$\pi / 2 \cdot I_{D C}$
Diode Average Current - $\mathrm{I}_{\text {F(AV) }}$	$I_{D C}$	$0.5 \cdot I_{D C}$	$0.5 \cdot I_{D C}$
Diode Rms Current - $\mathrm{I}_{\text {F(RMS) }}$	$\pi / 2 \cdot I_{D C}$	$\pi / 4 \cdot I_{D C}$	$\pi / 4 \cdot I_{D C}$
Fundamental Ripple Frequency - f_{R}	$f_{\text {mains }}$	$2 \cdot f_{\text {mains }}$	$2 \cdot f_{\text {mains }}$

\square

Waveforms for the Full-Wave Rectifier

$$
\begin{aligned}
V_{d c} & =\frac{2}{T} \int_{0}^{T} V_{m}^{2} \sin \omega t \\
V_{d c} & =\frac{2 V_{m}}{\pi} \\
V_{d c} & =0.636 V_{m}
\end{aligned}
$$

\square

Single-Phase Full-Wave Rectifier

PIV $=2 \mathrm{~V}_{\mathrm{m}}$,for centertap transformer

\square

Full-Wave Bridge Rectifier

Waveforms for the Full-Wave Bridge

Pr

